M1.(a) because they are gases
ignore vapours / evaporate / (g)
allow it is a gas
(b) (i) $80 / 79.5$
correct answer with or without working = $\mathbf{2}$ marks ignore units
if no answer or incorrect answer then evidence of 64/63.5 + 16 gains 1 mark
(ii) 79.375-80
correct answer with or without working = $\mathbf{2}$ marks if no answer or incorrect answer then evidence of
$\frac{64}{80}$ or $\frac{63.5}{79.5}(\times 100)$ gains 1 mark
accept (ecf) $\frac{64 \text { or } 63.5}{\text { answer (b)(i) }} \times 100$ for 2 marks
if answer correctly calculated.
if incorrectly calculated evidence of
mark
(iii) 3.2
correct answer with or without working = $\mathbf{1}$ mark allow (ecf)
$4 \times((b)(i i) / 100)$ for 1 mark if correctly calculated
(c) (i) 3.3
accept 3.33........ or 31 / 3 or $3.3 \bullet$
or $3.3 r$
(ii) (measure to) more decimal places or (use a) more sensitive balance / apparatus allow use smaller scale (division) or use a smaller unit ignore accurate / repeat
(iii) any two from:
ignore systematic / human / apparatus / zero / measurement / random / weighing / reading / recording errors unless qualified
different balances used or faulty balance
ignore dirty apparatus
reading / using the balance incorrectly
accept incorrect weighing of copper / copper oxide
spilling copper oxide / copper
allow some copper left in tube
copper oxide impure
allow impure copper (produced)
not all of the copper oxide was reduced / converted to copper or not enough / different amounts of methane used
accept not all copper oxide (fully) reacted
heated for different timesheated at different temperatures
if neither of these points awarded allow different amounts of heat used
accept Bunsen burner / flame at different temperatures
some of the copper produced is oxidised / forms copper oxide
some of the copper oxide / copper blown out / escapes (from tube)
ignore some copper oxide / copper lost
some water still in the test tube

M2.(a) electrons transferred from potassium to sulfur
two potassium atoms each lose one electron
forming $\mathrm{K}^{+} / 1+$ ions
sulfur atoms gain 2 electrons
forming S^{2-} / 2 - ions
(b) there are no gaps / sticks between the potassium ions and sulfide ions
(c) (two) shared pairs between H and S
rest correct - no additional hydrogen electrons and two non-bonding pairs on sulfur second mark dependent on first
(d) 342
(e) Property Explanation of property

Page 4

more than one line drawn from a variable negates the mark
(f)

Property
Explanation of property

more than one line drawn from a variable negates the mark

M3. (a) (i) 40
correct answer with or without working or incorrect working if the answer is incorrect then evidence of $24+16$ gains 1 mark ignore units
(ii) 60
correct answer with or without working or incorrect working if the answer is incorrect then evidence of 24/40 or 24/(i) gains 1 mark
ecf allowed from part(i)
ie $24 /(i) \times 100$
ignore units
(iii) 15
ecf allowed from parts(i) and (ii)
$24 /(i) \times 25$ or (ii)/ 100×25
ignore units
(b) (i) any two from:
ignore gas is lost

- error in weighing magnesium / magnesium oxide
allow some magnesium oxide left in crucible
- loss of magnesium oxide / magnesium
allow they lifted the lid too much
allow loss of reactants / products
- not all of the magnesium has reacted
allow not heated enough
allow not enough oxygen / air
(ii) any two from:
ignore fair test
- check that the result is not anomalous
- to calculate a mean / average
allow improve the accuracy of the mean / average
- improve the reliability
allow make it reliable
- reduce the effect of errors

M4. (a) 1.86
(b) use a balance which weighs to more decimal places
accept (use a measuring cylinder with) smaller (scale) divisions / intervals
or use more sensitive balance
allow reference to more decimal places allow smaller units / scale
(c) (i) 45.8(3333333)
correct answer gains $\mathbf{2}$ marks with or without working ignore units / 46 if the answer is not correct then evidence of: $(45.4+46.3+45.8) \div 3$ or $137.5 \div 3$ or 47.25 / 47.3 / 47.2 gains 1 mark
(ii) any two from:
ignore zero error/faulty equipmen

- loss of gas or leak
- error in measurement of volume of gas / gas in cylinder / $1 \mathrm{dm}^{3}$
- error in weighing the canister / gas at start
- error in weighing the canister / gas at end error in weighing the canister/gas = $\mathbf{1}$ mark
- change in temperature allow incorrect measurement of temperature
- change in pressure
allow incorrect measurement of pressure
if no other mark awarded allow error in weighing for 1 mark
(iii) any one from:
ignore fair test / precise / valid or to check for errors / mistakes
- check for anomalous results
- to find the mean / average allow improve (accuracy of) mean / average
- (improve) reliability / make reliable
(d) 44
correct answer gains 2 marks with or without working ignore units
if the answer is incorrect evidence of $(3 \times 12) / 36$ and $(8 \times 1) / 8$ gains 1 mark

M5. (a) because they are gases ignore vapours / evaporate / (g) allow it is a gas
(b) (i) $80 / 79.5$
correct answer with or without working = $\mathbf{2}$ marks ignore units
if no answer or incorrect answer then evidence of $64 / 63.5+16$ gains 1 mark
(ii) $80 / 79.87 / 79.9 / 79.375 / 79.38 / 79.4$
correct answer with or without working = $\mathbf{2}$ marks if no answer or incorrect answer then
evidence of $\frac{\frac{64}{80}}{}$ or $\frac{63.5}{79.5}$ (x100) gains 1 mark accept (ecf) $\frac{64 \text { or } 63.5}{\text { answer }(b)(i)}(\times 100) \quad$ for 2 marks if correctly calculated if incorrectly calculated evidence of $\frac{64 \text { ar } 63.5}{\operatorname{answer}(b)(i)}(\times 100)$ gains 1 mark
(iii) 3.2
correct answer with or without working = $\mathbf{1}$ mark allow (ecf) $4 \times((b)(i i) / 100)$ for 1 mark if correctly calculated
(c) (i) 3.3
accept $3.33 . \ldots . .$. or $3 \frac{1}{3}$ or $3.3 \cdot$ or 3.3^{\prime}
(ii) measure to more decimal places
or use a more sensitive balance / apparatus
allow use smaller scale (division)
or use a smaller unit
ignore accurate / repeat
(iii) any two from:

- ignore systematic / human / apparatus / zero / measurement / random / weighing / reading errors unless qualified
- different balances used or faulty balance ignore dirty apparatus
- reading / using the balance incorrectly or recording error accept incorrect weighing of copper / copper oxide
- spilling copper oxide / copper
allow some copper left in tube
- copper oxide impure
allow impure copper (produced)
- not all of the copper oxide was reduced / converted to copper or not enough / different amounts of methane used accept not all copper oxide (fully) reacted
- heated for different times
- heated at different temperatures
accept Bunsen burner / flame at different temperatures
- \quad some of the copper made is oxidised / forms copper oxide
- \quad some of the copper oxide / copper blown out / escapes (from tube)
ignore some copper oxide / copper lost
- \quad some water still in the test tube

M6.
(a)

H
1

> 2 and 1 must be on the left
> 2 must be above half-way on the H and the 1 below half-way accept diagram with 2 different particles in centre and 1 particle on circle
(b) (i) 18
ignore working
ignore units

H-1 atoms have one proton
allow H-2 has two particles and H-1 has one particle for 1 mark
or
H-2 atom has one neutron (1)
allow H-2 atom has one more neutron for $\mathbf{2}$ marks
H-1 atom has no neutrons (1)
NB heavy water (molecule) has 2 more neutrons = $\mathbf{2}$ marks heavy water (molecule) has more neutrons $/$ particles $=\mathbf{1}$ mark if no other mark awarded then heavy water molecule has \boldsymbol{M}_{r} of 20 = 1 mark ignore reference to electrons

